Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Kazuhiro Sugamoto^{*}, Chiaki Kurogi, Yoh-ichi Matsushita, Takanao Matsui

Faculty of Engineering, University of Miyazaki, Gakuen-Kibanadai, Miyzaki 889-2192, Japan

ARTICLE INFO

Received 29 August 2008

Revised 3 September 2008

Accepted 5 September 2008

Available online 7 September 2008

Article history:

ABSTRACT

Naturally occurring chalcones, namely 4-hydroxyderricin (1), xanthoangelol H (2), deoxyxanthoangelol H (3), and deoxydihydroxanthoangelol H (4), were first synthesized and evaluated for antibacterial activities.

© 2008 Elsevier Ltd. All rights reserved.

4-Hydroxyderricin (1) was isolated from Lonchocarpus neuroscapha¹ and Angelica keiskei² (Fig. 1). Xanthoangelol H (2),³ deoxyxanthoangelol H (3),⁴ and deoxydihydroxanthoangelol H $(4)^4$ were isolated from Angelica keiskei. Compound 1 exhibited various biological activities, such as antibacterial activity against grampositive pathogenic bacteria,⁵ antitumor promoting activity in mouse skin carcinogenesis using DMBA and TPA,⁶ phenylephrineinduced vasoconstriction in vivo,⁷ hypotensive and lipid regulatory actions in hypertensive rats,⁸ antitumor and antimetastatic activities,⁹ and inhibitory effect on induction of EBV-EA by TPS in Raji cells.¹⁰ Compounds 1 and 2 exhibited cytotoxicity against neuroflastoma cells.¹¹ Compound **3** exhibited inhibitory effect on induction of EBV-EA by TPS in Raji cells.⁴ Compound **1** is one of the major components of Angelica keiskei, on the other hand, 2-4 are minor components. For example, 1 (13.5 g) and 2 (30 mg) were isolated from air-dried roots (19.5 kg),³ and **3** (17 mg) and **4** (3 mg) were isolated from stem exudates (300 g).⁴ It is difficult to isolate 2-4 from Angelica keiskei. Therefore, few reports have been published on the biological activities of **2–4**.^{4,10,11} To our knowledge, no work has been done on total synthesis of 1-4. It seems to be important to develop synthetic routes of these chalcones for elucidation of the relationship between their structures and promising activities.

* Corresponding author. Tel.: +81 985 58 7390; fax: +81 985 58 7323. *E-mail address:* sugamoto@cc.miyazaki-u.ac.jp (K. Sugamoto). Herein, we report the synthesis of these chalcones **1–4** and evaluation of their antibacterial activity.

4-Hydroxyderricin (1) would be prepared by Claisen–Schmidt condensation of the key intermediate **5** with 4-methoxymethoxybenzaldehyde (**6**) (Scheme 1). Compound **5** could be converted from accessible 2'-hydroxy-4'-methoxyacetophenone (**7**). Xanthoangelol H (**2**), deoxyxanthoangelol H (**3**), and deoxydihydroxanthoangelol H (**4**) also would be prepared via **5**.

Treatment of **7** with prenyl chloride in the presence of K_2CO_3 gave prenyloxyacetophenone (**10**) in 91% yield (Scheme 2). The rearrangement of **10** was first attempted in the presence of solid

^{0040-4039/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.015

Table 1

Rearrangement of 10 in the presence of solid acid catalyst

acid catalyst in a procedure similar to that described in the previous reports (Table 1).^{12,13} The treatment of **10** in the presence of montmorillonite K10 in CH₂Cl₂ at 0 °C gave desired compound **5** in 53% yield, along with **11** (25%), **12** (7%), and **7** (4%). The rearrangement of **10** using Florisil[®] in toluene at 110 °C gave **5** as well, but only provided **5** in 27% yield, along with **11** (32%), **7** (8%), and chroman **9** (10%).

Table 2 shows the Claisen–Schmidt condensation of **5** with **6** under several conditions. The yield of chalcone **13** was low in all cases. The low yield is presumably caused by secondary cyclization of 2'-hydroxychalcone to flavanone as reported in the literature.¹⁴ In contrast, condensation of **10** with **6** in the presence of 3 M NaOH afforded the chalcone **14** in good yield (Scheme 3). The rearrangement of **14** using montmorillonite K10 at 0 °C gave the desired

Table 2

Claisen-Schmidt condensation of 5 with 6

MeO	OH O OHC + 6 OMOM MeO	13 ОМОМ
Entry	Conditions	Yield of 13 (%)
1	3 M KOH, EtOH, rt, 24 h	38
2	50% KOH, EtOH, rt, 35 h	33
3	Ba(OH) ₂ ·8H ₂ O (2.5 equiv), EtOH, 50 °C, 1 h	23

Scheme 3. Reagents and conditions: (a) **6** (1.2 equiv), 3 M NaOH, EtOH, rt, 12 h; (b) montmorillonite K10 (1 wt equiv), CH_2CH_2 , 0 °C, 1.5 h; (c) *p*-TsOH-H₂O (1 equiv), MeOH, 30 °C, 24 h.

product **13** in 46% yield. 4-Hydroxyderricin (**1**) was synthesized by deprotection of **13** using *p*-toluenesulfonic acid monohydrate at 30 °C in high yield. Compound **1** was prepared in 41% yield over 4 steps from **7** via **14**. Physical and spectral data of synthetic **1** were consistent with those reported for natural **1**.¹

The epoxidation of **5** with *m*-CPBA proceeded at room temperature to afford the epoxide as an intermediate, which was immediately converted into the chroman **8** (Scheme 4). Condensation of **8** with **6** gave chalcone **15** in 76% yield. Xanthoangelol H (**2**) was synthesized by deprotection of **15** using *p*-toluenesulfonic acid monohydrate under reflux in good yield. Physical and spectral data of synthetic **2** were consistent with those reported for natural **2**.³

Treatment of **5** in the presence of montmorillonite K10 at 50 °C provided the chroman **9** in high yield (Scheme 5).¹⁵

Condensation of **9** with **6** gave the chalcone **16** in 95% yield. Deoxyxanthoangelol H (**3**) was synthesized by deprotection of **16** under similar conditions described above in good yield.

Hydrogenation of **16** in the presence of Pd/C catalyst gave **17** in 94% yield (Scheme 6). Deoxydihydroxanthoangelol H (**4**) was synthesized by deprotection of **17** under similar conditions described above in good yield. Physical and spectral data of synthetic **3** and **4** were consistent with those reported for natural **3**² and **4**.⁴

Antibacterial activities of synthesized chalcones **1–4** were investigated against both Gram-negative (*Escherichia coli, Proteus*

Scheme 4. Reagents and conditions: (a) *m*-CPMA (1.2 equiv), CH_2CH_2 , rt, 0.5 h; (b) montmorillonite K10 (1 wt equiv), CH_2CH_2 , rt, 1 h; (d) **6** (1.2 equiv), 3 M NaOH, EtOH, rt, 20 h; (d) *p*-TsOH-H₂O (1 equiv), MeOH, reflux, 2 h.

Scheme 5. Reagents and conditions: (a) montmorillonite K10 (1 wt equiv), Toluene, 50 °C, under N₂, 40 h; (b) **6** (1.2 equiv), 3 M NaOH, EtOH, rt, 20 h; (c) *p*-TsOH- H_2O (1 equiv), MeOH, reflux, 2 h.

Scheme 6. Reagents and conditions: (a) Pd/C (0.1 wt equiv), under H₂, (1 atm), EtOH, rt, 0.5 h; (b) p-TsOH-H₂O (1 equiv), MeOH, reflux, 1 h.

Table 3 Antibacterial effect of compounds 1-4

Entry	Туре	Bacterium	MIC (µg/ml)			1)	
			1	2	3	4	Chloramphenicol
1	Gram- negative	Escherichia coli	>256	>256	>256	>256	16
2	Gram- negative	Proteus mirabilis	>256	>256	>256	>256	02
3	Gram- negative	Rastonia salanacearum	2	>256	>256	>256	02
3	Gram- positive	Bacillus subtilis	<1	>256	>256	>256	03
4	Gram- positive	Staphylococcus epidermidis	1	>256	>256	>256	01

mirabilis, Rastonia salanacearum) and Gram-positive bacteria (Bacillus subtilis, Staphylococcus epidermidis). The MIC values are summarized in Table 3. 4-Hydroxyderricin (1) showed strong antibacterial

activity against R. salanacearum, B. subtilis, and S. epidermidis. Inamori et al. reported that compound **1** have no effect against Gram-negative bacteria.⁵ It is interesting to note that compound 1 exhibited strong antibacterial activity against *R. salanacearum*. On the other hand, the other chalcones **2–4** showed no activity. These results suggested that 2'-hydroxy and/or 3'-prenyl groups were important for antibacterial activity.

In conclusion, the described method allowed for the synthesis of 1 in 4 steps with 41% overall yield from commercially available 7. Compound 2 was prepared in 28% yield at 6 steps, 3 in 39% yield at 5 steps, and 4 in 38% yield at 6 steps from 7 via the key intermediate 5.

References and notes

- 1. Delle Monache, G.; de Mèllo, J. F.; Delle Monache, F.; Marini Bettolo, G. B.; Gonçaleves de Lima, O.; Coélhode de Barros, J. S. Gazz. Chim. Ital. 1975, 104, 861-865.
- Kozawa, M.; Morita, N.; Baba, K.; Hata, K. Yakugaku Zasshi **1978**, 98, 210–214. Nakata, K.; Taniguchi, M.; Baba, K. *Nat. Med.* **1999**, 53, 329–332. 2
- 3
- Akihisa, T.; Tokuda, H.; Hasegawa, D.; Ukiya, M.; Kimura, Y.; Enjo, F.; Suzuki, T.; 4. Nishino, H. J. Nat. Prod. 2006, 69, 38-42.
- Inamori, Y.; Baba, K.; Tsujibo, H.; Taniguchi, M.; Nakata, K.; Kozawa, M. Chem. 5 Pharm. Bull. 1991, 39, 1604-1605.
- 6. Okuyama, T.; Takata, M.; Takayasu, J.; Hasegawa, T.; Tokuda, H.; Nishino, A.; Nishino, H. Planta Med. 1991, 57, 242-246.
- Matsuura, M.; Kimura, Y.; Nakata, K.; Baba, K.; Okuda, H. Planta Med. 2001, 67, 7 230-235
- 8. Ogawa, H.; Ohno, M.; Baba, K. Clin. Exp. Pharmacol. Physiol. 2005, 32, 19-23.
- Kimura, Y.; Taniguchi, M.; Baba, K. Planta Med. 2004, 70, 205-210. Q
- 10. Akihisa, T.; Tokuda, H.; Ukiyo, M.; Iizuka, M.; Schneider, S.; Ogasawara, K.; Mukainaka, T.; Iwatsuki, K.; Suzuki, T.; Nishimoto, H. Cancer Lett. 2003, 201, 133-137
- 11 Nishimura, R.; Tabata, K.; Arakawa, M.; Ito, Y.; Kimura, Y.; Akihisa, T.; Nagai, H.; Sakuma, A.; Kohno, H.; Suzuki, T. Biol. Pharm. Bull. 2007, 30, 1878-1883.
- 12 Dintzner, M. R.; Morse, K. M.; McCelland, K. M.; Cologado, D. M. Tetrahedron Lett. 2004, 45, 79-81.
- 13. Talamás, F. X.; Smith, D. B.; Cervantes, A.; Franco, F.; Cutler, S. T.; Loughhead, D. G., ; Morgans, D. J., Jr.; Weikert, R. J. Tetrahedron Lett. 1997, 38, 4725-4728.
- 14. Formentín, P.; García, H.; Leyva, A. J. Mol. Catal. A: Chem. 2004, 214, 137-142
- 15. Dauben, W. G.; Corgen, J. M.; Behar, V. Tetrahedron Lett. 1990, 31, 3241-3244.